Numerical Modelling of Droplet Transient Heating and Evaporation

نویسندگان

  • S. S. Sazhin
  • W. A. Abdelghaffar
  • P. A. Krutitskii
  • E. M. Sazhina
  • M. R. Heikal
چکیده

Several approaches to numerical modelling of liquid droplet heating and evaporation by convection and radiation from the surrounding hot gas are discussed. The finite thermal conductivity of liquid, recirculation in droplets, and time dependence of gas temperature and the convection heat transfer coefficient are taken into account. For the constant and almost constant convection heat transfer coefficient the new analytical solutions of the heat conduction equation inside droplets are incorporated into the numerical code. For the arbitrary convection heat transfer coefficient the numerical solution of the latter equation is replaced by the numerical solution of the Volterra integral equation of the second kind. Direct comparison between these approaches shows that the solution based on the assumption of constant convective heat transfer coefficient is the most computer efficient for implementation into numerical codes. The results of the application of this approach to the numerical modelling of fuel droplet heating and evaporation in conditions relevant to diesel engines are briefly discussed. This approach is more effective than the approach based on the numerical solution of the discretised heat conduction equation inside the droplet, and more accurate than the solution based on the parabolic temperature profile model. The relatively small contribution of thermal radiation to droplet heating allows us to take it into account using a simplified model, which does not consider the variation of radiation absorption inside droplets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advanced Modelling and Simulation in Engineering, Pultusk 29.05-1.06.1994 TRANSIENT EVAPORATION OF OSCILLATING DROPLET

Dynamic and history of the evaporization of a single isolated droplet suddenly exposed to an unsaturated gaseous enviroment has been studied numerically and experimentally. An analysis of the droplet oscillation frequency is used to measure the variation of the surface tension with time. As surface tension depends on the temperature, measured transient values of the surface tension may be used ...

متن کامل

Droplet evaporation characteristics due to wet compression under RCM conditions

The vaporization characteristics of a single fuel droplet subjected to rapid gas-phase compression (i.e., wet compression) are computationally investigated using two spherically-symmetric models: quasisteady (QS) and fully transient (TS). Features of the wet compression process under rapid compression machine (RCM) conditions are discussed with these compared to simulations where the far-field ...

متن کامل

Comparative Analysis of a Single Fuel Droplet Evaporation

In this research, the results of comparative analysis of a single fuel droplet evaporation models are presented. Three well-known evaporation models including Spalding, Borman-Johnson and Abramzon-Sirignano models are analyzed using Computational Fluid Dynamic (CFD). The original Spalding model is extended to consider the effects of the Stefan flow, unsteady vaporization, and variable propertie...

متن کامل

J . E . , Crua , C . , Pearson , R . and Gold , M . Droplet size and morphology characterization for diesel sprays under atmospheric operating conditions

The shape of microscopic fuel droplets may differ from the perfect sphere, affecting their external surface area and thus the heat transfer with the surrounding gas. Hence there is a need for the characterization of droplet shapes, and the estimation of external surface area, in order to enable the development of physically accurate mathematical models for the heating and evaporation of diesel ...

متن کامل

Modelling of Heating and Evaporation of Biodiesel Fuel Droplets

This paper presents the application of the Discrete Component Model for heating and evaporation to multi-component biodiesel fuel droplets in direct injection internal combustion engines. This model takes into account the effects of temperature gradient, recirculation and species diffusion inside droplets. A distinctive feature of the model used in the analysis is that it is based on the analyt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004